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An Adaptive Finite Element Method for 
Linear Elliptic Problems 

By Kenneth Eriksson and Claes Johnson 

Abstract. We propose an adaptive finite element method for linear elliptic problems 
based on an optimal maximum norm error estimate. The algorithm produces a sequence 
of successively refined meshes with a final mesh on which a given error tolerance is 
satisfied. In each step the refinement to be made is determined by locally estimating 
the size of certain derivatives of the exact solution through computed finite element 
solutions. We analyze and justify the algorithm in a model case. 

Introduction. Recently, adaptive finite element methods for elliptic problems 
have attracted much interest, see, e.g., [1]-[4], [6], [7], [13], and are rapidly be- 
coming increasingly important in applications. The basic problem concerning such 
adaptive methods is roughly the following: Given an elliptic problem with no a pri- 
ori knowledge of the behavior of the exact solution and a finite element method for 
this problem together with an error tolerance 6 > 0 and a certain norm, construct 
an automatic procedure for finding a finite element mesh such that the error in the 
corresponding finite element solution is at most 6 in the given norm. One further 
requires the constructed mesh to be efficient in the sense that, e.g., the number 
of elements is nearly minimal. A typical adaptive procedure could be expected to 
involve a sequence of finite element solutions on successively refined meshes (start- 
ing with, e.g., a quasi-uniform mesh), and the procedure would end when the error 
is smaller than or equal to the given tolerance. At each step of the procedure an 
estimate of the error on the given mesh would be made, and in case the error toler- 
ance is not met, a refined mesh to be used in the next step would be constructed. 
Typically, the procedure would generate meshes which are refined in regions where 
the exact solution is nonsmooth such as, e.g., neighborhoods of corners in a polyg- 
onal domain. In the methods proposed by Babuska and coworkers [2]-[4], the error 
estimate at each step is based on solving local problems involving a local residual, 
and the refinements are carried out according to the size of the solutions of the 
local problems. This method seems to produce reasonable meshes in many cases 
but appears to be difficult to theoretically justify in several dimensions (cf. [2], [4]). 

The purpose of this note is to present and analyze, in a model case, an adaptive 
procedure which is based on a different approach than the Babuska method. As a 
model problem we shall consider the Poisson equation 

(0.1) |-Au =f in Q, 

u=0 on F, 
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in a bounded domain Q in the plane with boundary F. We shall consider the 
standard finite element method for (0.1) using continuous piecewise linear functions 
on a triangulation Th = {K} of Q into triangles K of diameter hK. We shall assume 
that we want to control the gradient of the error in the maximum norm (cf. Remark 
1.2 below). The error control will be based on an optimal a priori estimate of the 
form (cf. [17], [8]) 

(0.2) IIV(u - uh)IIjj.'C < Co max hK|UI2,.,K, 
KC-Th 

where for m = 0,1,..., and w a domain, 

I Vlmoow = sup ID'v(x)l, IIvIKoW = Iv1ooo,w, 
xEw 

1a I=m 

and where uh denotes the finite element solution. Here we use the usual multi-index 
notation Dav for derivates of order jal. Further, Co denotes a positive constant 
assumed for the moment to be known approximately (the problem of roughly esti- 
mating Co is commented on in Remark 3.1 below). Given now a tolerance 6 > 0, 
we want to find a finite element solution uh satisfying IIV(u - uh)IIQ < 6, and 
thus (0.2) leads us to the following choice of the local mesh size hK: 

(0.3) CohKjUj2,oo,K 8 6- 

The obvious idea is now to seek to estimate the quantity 1U12, oK by using computed 
finite element solutions uh and then determine the local mesh size according to (0.3). 
We shall present below an algorithm for error control and adaptive mesh selection 
based on this approach. We shall then consider a model situation where the exact 
solution has a singularity in Q of a certain form, and we shall in this very special 
case verify that the proposed algorithm will generate a sequence of meshes leading 
to a final correctly refined mesh on which the error tolerance is met. The basic 
technical tool to prove this result is a localized version of the a priori estimate (0.2). 
Using this estimate we prove that it is possible to locally estimate with sufficient 
accuracy the desired quantity IUI2,oo,K by using certain (local) difference quotients 
of computed gradients of uh. Thus, we may say that our adaptive algorithm is 
based on an optimal a posteriori error estimate of the form (0.2) with IUI2,00,K 
replaced by an approximation obtained through the computed solution uh. We are 
presently developing this approach also for adaptive mesh control in time and space 
for parabolic problems ([10], [11], [14], [15]) and hyperbolic problems ([12]). 

The analysis of this note, in which we consider for simplicity the case of an 
interior singularity on a smooth domain, can be extended to cover problem (0.1) 
with Q a convex polygonal domain (and f smooth), in which case the exact solution 
has singularities of strength r'3, 3 > 1, at the corners, see Eriksson [9], where also 
further extensions to nonconvex polygonal domains corresponding to > 2 are 
given. 

The general idea of basing an adaptive method on estimating the derivatives of 
the exact solution through computed approximate solutions of course is not new 
and has been used extensively in an intuitive, qualitative only and nonautomatic 
way in engineering computations. An early paper proposing to base an adaptive 
method on an energy norm error estimate and to estimate the derivatives of the 
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exact solution involved through computations, is given by [7]. A similar approach 
was also taken in [6] and [16]. Our method is based on the same idea but we extend 
the setting by considering different norms (cf. Remark 1.2 below), by seeking to 
justify the algorithm theoretically and also by considering the problem of estimating 
e.g. the constant Co in (0.2) to make the error control fully quantitative, cf. Remark 
3.1 below. 

Extensions of the presented results to more general elliptic problems, for instance 
variable coefficient linear problems, or to higher-order finite elements, seem to be 
possible. As soon as we have a sharp error estimate together with a local maximum 
norm error estimate at hand, there is a possibility of using this as a basis for an 
adaptive procedure. In particular, this means that error estimates which have been 
considered to be of mostly theoretical interest, in fact may be of key importance in 
the practical implementation of the finite element method on real life problems in 
the future! 

An outline of this note is as follows. In Section 1 we present the adaptive 
algorithm. In Sections 2 and 3 we analyze this algorithm in a model case and prove 
that in this case it performs as desired. Finally, in Section 4 we present the results 
of some numerical experiments with a particular implementation of the algorithm 
which show that indeed the algorithm performs in practice as expected. 

We shall assume that all finite element meshes Th that occur satisfy a minimum 
angle condition, i.e., we assume that there is a positive constant 0 such that all 
angles of all K E Th for all Th are greater than or equal to 0. Below, we will by c 
and C denote various positive constants which will be independent of the meshes 
Th and thus of the corresponding finite element solutions uh. The constants may 
depend on the minimal angle 0, the domain Q and on the exact solution u (more 
precisely on the constants c and C in (2.1)). 

1. The Adaptive Algorithm. We shall consider the following standard finite 
element method for the Poisson equation (0.1): Given the finite element mesh 
Th = {K}, find uh E Vh such that 

(1.1) a(uhv) = v(f) VV E Vh, 

where Vh is the space of piecewise linear continuous functions v on the triangulation 
Th vanishing on F, and 

a(v,w) = Vv. Vwdx, (vw) =vwdx. 

We assume that we start with a quasi-uniform mesh TT = {K} with elements K 
satisfying c6 < ch < hK < Ch. To take h > c6 is reasonable since otherwise the 
initial mesh would be unnecessarily fine in areas where the solution is smooth. 

To compute approximations of the derivatives Dlu with lol = 2 locally, we 
shall apply certain difference operators D7 to the computed gradient Vuh. The 
difference operators D7 will be of the form 

D71v(x) = V(X iAH)-V(X) 
H~~ 

with a = (1,0) or a = (0,1). Here, H = ChK if x E K, and C is a sufficiently 
large constant, the choice of which will be made precise below. If x is close to the 
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boundary, the point x ? -yH is chosen so as to belong to Q. We will thus use first- 
order difference operators D71 involving translations of size H which will typically 
be of the order of a couple of local mesh widths. 

The algorithm can now be formulated as follows: 

10. Choose Th = TT where TK is the initial quasi-uniform mesh. 
20. Given a mesh Th, compute the corresponding finite element solution uh E 

Vh . 

3?. Compute the following quantity for each x E K E Th: 

(1.2) DHUh(X) = max{|ID"D'Uh(y)I: jal = = 1, I - XI < C0h}, 

where h = minKeTh hK and C is a sufficiently large constant. 

40. If for all K E Th we have 

(1.3) CohKD2(Uh ;K) < 68 

where 

D2(uh; K) = maxD2uh(x), 

then stop and accept the finite element solution uh. If not, construct a new 
mesh Th by minimally refining the old mesh Th so that for each K E Th 

(1.4) CohkD2(Uh; K) < 6 Vk E Th with k C K. 

Then redefine Th = Th and return to 20. 

Remark 1.1. Note that to compute DH (uh; K), only local simple computations 
are involved; cf. Section -4 below for the particular implementation of the algorithm 
used in the numerical experiments. The quantity DH (uh; K) is basically to be 
thought of as an approximation of IUI2, cK. For technical reasons, D2(uh; K) 
involves difference quotients at points in an h-neighborhood of K. Variants of this 
procedure are possible. For instance, we may take C = 0 in (1.2) and avoid the 
maximization if we require the meshes Th to have a certain "stiffness", guaranteeing 
that the mesh size does not change too quickly (see [9]). E 

Remark 1.2. One may choose to control the error in norms other than the 1,l1,00 
norm used in (0.2). For example, we may take as starting point a maximum norm 
estimate of the form (cf., e.g., [8], [17], [18], [19]) 

(1.5) I|u - UhII.02 < C0o max h 2jUI21,OK, 
KEThK 

where the constant Co here also includes a logarithmic dependence of min hK, or 
the standard energy norm estimate 

(1.6) |U - U11,2,0 < Co ( K 2 hIu,2,IK) 
KETh 

where I denotes the seminorm of highest-order derivatives in the Sobolev 
space Hm(w). In case (1.5), we would use the above algorithm with hK in (1.3) and 
(1.4) replaced by h2. The estimate (0.2) would be used also in this case to prove 
that D2(Uh; K) is a sufficiently good approximation to IU12,0,,K; cf. the analysis 
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below. In case (1.6), the new mesh Th in 40 would be constructed so that 

h0D2(uh; K) = constant, Vk E Th with K C K, 

K H co 12 C Nj=6 

where N is the number of elements in Th. Again, (0.2) would be used to justify 
the algorithm. Note that (1.5) and (1.7) give the same control up to the choice of 
the tolerance 6. For numerical experiments with error control based on (1.5), see 
Section 4 below. For a further discussion, see [9]. El 

Remark 1.3. In any adaptive method we face two problems, namely, (i) esti- 
mation of the error and check if the error is below the given tolerance, and (ii) 
construction of a properly refined new grid if the error is above the tolerance. It is 
not enough to solve just problem (i). Even if we can accurately estimate the error 
e(x) for all x E Q, it is not clear how to properly refine the mesh to decrease the 
error, if too large. In general, one should not refine everywhere where the error is 
too large since in an elliptic problem some effects are global, for instance, a corner 
singularity may cause a large error also away from the corner. To decrease the error 
in such a case, we should not refine everywhere but only close to the corner. A 
main difference between the Babuska approach and our approach is that we base 
the adaptive algorithm on an error estimate which exhibits the structure of the 
error and which is used to solve both problems (i) and (ii). It appears to us that 
in the Babuska approach it is less obvious how to solve (ii), and that this is the 
reason why this method is more difficult to justify theoretically. El 

2. Analysis in a Model Case. 
2.1. The Exact Solution. We shall now analyze and justify the proposed adaptive 

algorithm under the assumption that the exact solution u belongs to the Sobolev 
space W: (Q) and satisfies the following estimate: There are constants c and C 
such that for all x E Q. 

(2.1a) cIxj'32 < D 2u(x) < CIxI'3:2, 

(2.1b) ID'u(x)I < Clxl-'3 for 1j-y = 3, 

where 
D2u(x) = max{lD'u(x)l: Jal = 21, 

and 1 < g < 2. Note that this corresponds to a situation where the exact solution 
u(x) has a singularity at the origin of strength JxJI. For simplicity we assume 
that the origin belongs to the interior of Q. A more realistic situation would be to 
consider the case of a singularity located at a corner of Q; a singularity of strength 
JxJ1 with 1 < g < 2 would then correspond to a corner angle i, = r/:3 satisfying 
ir/2 < /c < wr. Of course the restriction d3> 1 is related to the fact that we seek to 
control the quantity IIVuIIOc,,Q, which requires jjVuJJ,,Q, to be bounded, whereas 
we assume d < 2 to have a singularity of sufficient strength for a refinement to be 
necessary. 

Observe that in applying the algorithm in the above case we do not, of course, 
use any a priori knowledge of the nature of the exact solution like (2.1). The only 
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data required for the algorithm is 0, f and 6. What we prove is that if (2.1) is 
satisfied, then the algorithm will perform as desired. 

To simplify the presentation, we shall further assume that the region 0 is con- 
vex with smooth boundary r. The functions v in the finite element space Vh are 
assumed to be piecewise linear on the triangulation Th = {K}, corresponding to a 
polygonal approximation 0h of 0, and extended by zero in 0 \ nh. 

2.2. Optimal Meshes. Let us now first see what a reasonable mesh would look 
like in the case (2.1), assuming that we want to satisfy (0.3). It is then convenient 
to divide 0 into subregions 0j according to the size of the second derivatives of u. 
We thus introduce 

0j = {x E 0: 2- <131 < 2-+'}, 
and we assume that Uj ,7o 1j = 0. We then have by (2.1) 

(2.2) cd' 2 < IuI2,ooO < Cdj2 

where di = 2-i. From (0.3) it follows that we should choose the mesh size hj in 

0j so that hid'- 2 6, i.e., 

(2.3) hj , bd 2- 

as long as hj < dj, i.e., as long as j < J, where 

(2.4) d _ 6. 

Here and below, we write a - b if ca < b < Ca. Further, we should choose the 
mesh size -6( '-1) in 0, = {x E 0: IxI < 2-J}. It is clear that the choice (2.3) 
is best possible, and we shall prove below that our algorithm will produce a final 
mesh satisfying (2.3). 

2.3 Analysis of Step 1. We first recall the following optimal global maximum 
norm estimate (cf. [171): For the finite element method (1.1) on the quasi-uniform 
mesh TT with solution uh we have for 0 < s < 1 

(2.5) IIV(u - Uh)I0oo,0 < C'h Iu1e+1,0,n, 

where I I,.oo~n denotes the norm in the usual Sobolev space Wj,(0) of functions 
with derivatives of order s in Loo (0). Let us now start the analysis of the algorithm 
in the special case of an exact solution u E W, (0) satisfying (2.1). We then begin 
with the quasi-uniform partition TK with elements of size h and the corresponding 

finite element solution uJ. We shall use the following local version of the estimate 
(2.5) with 8 = 1, which states that the finite element error in 0, is comparable to 
the interpolation error in 0j, if dj/h is large enough. 

LEMMA 2.1. There are constants C and C1 such that, if dj > Clh, then 

(2.6) IIV(u - uh)II ,0, ? Chd-2. 

Below we shall give an extension of Lemma 2.1 to more general meshes. This 
result, which is the key technical result we will need, involves a generalization of 
the earlier estimate (2.5) to non-quasi-uniform meshes and also, as indicated, a 
localization. 

We postpone the proof of Lemma 2.1 and first show how this result can be used 
to prove that D2uh (X) will be a reasonable approximation of D2u(x) for x E 0j if 
H/h and dd/h are big enough. More precisely, we shall prove the following result. 
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LEMMA 2.2. There are constants c, C and C such that, if H = Ch, then 

(2.7a) c H I<D a(x)I ?C if IxI > Ch, 
-jD2U(X)j 

-C3-2 <-/3-2 

(2.7b) ch lDu h(x)l < Ch if lxi ? Ch. 

Proof. We have by (2.1) and Lemma 2.1, if x E 0,, d, > 2C1h, di > 2H, 

l'Bl = LuY = 1, 

lDHID'uh (X) - D? u(x) I < ID" D'(uh -u) (x) I + I (DI - DI)D'u(x) I 
Ch -2 

+OHd3-3 

where we used a standard approximation result to estimate the second term. Now, 
if we here choose H = Ch and dj > CH with C sufficiently large, then it follows 
that 

(2.8) ID7Dauh(x) - Dl+"u(x) I < 2 D2U(X) 

if x E Qj, dj > Ch and H = Ch. Further, by the global estimate (2.5) with 
s = - 1 and an inverse estimate it also follows that there is a constant C such 
that, if H > h, then 

(2.9) IDDOuh (X))I < COh'2. 

Recalling now the definition (1.2), we easily obtain the desired estimates (2.7a,b) 
by combining (2.1), (2.8) and (2.9) (note that the constant C in (1.2) is assumed 
to be the same as the constant C in the lemma). 0 

By Lemma 2.2 we may use uh to accurately compute a local mesh size hj in 

Qj satisfying (2.3), if dj > Ch, i.e., knowing uh, we may decide on a reasonable 
refinement in {Ixj > Ch} (for simplicity we write {Ixj < d} to mean {x E Q: jxj < 

d}). In the region {IxI < Ch} we will, by (2.7b), be led to a refinement with 
- 2-/3 

mesh size c6h . Thus, if in stage 40 of the algorithm the stopping criterion is 
not satisfied, a new mesh Th will be constructed which is a refinement of the first 
quasi-uniform mesh TT and which will have the following characteristics (here h(x) 
is a measure of the mesh size at x): 

(2.1Oa) h(x) - 6d 2-3 if x E Qj, dj > Ch, 

(2.1Ob) h(x) - h := 6h 
- 

if Ixj < Ch, 

where 6 < Ch ; in fact, we have assumed that h > c6 and h < C. This means 
in particular that the mesh Th obtained after the first quasi-uniform mesh TH will 

be correctly refined in {Jxj > Ch} and will be quasi-uniform in {Jxj < Ch} with 

typical mesh size h -h 6. 
2.4 Analysis of Step 2. We now continue the analysis starting with a mesh Th 

with local mesh size h(x) satisfying (2.10). We shall in this case use the following 
generalizations of Lemmas 2.1 and 2.2, the difference being that the mesh is now 
no longer quasi-uniform. 
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LEMMA 2.3. Suppose the mesh Th satisfies (2.10). Then there are constants C 
and Ci such that, if d: > Clih, then 

(2.11) IIV(u - uh)jIIjNQ < Chjd -2, 3 j 

where, according to (2.10), hj := max(6d'-, 6h 2) is the local mesh size on Qj. 

LEMMA 2.4. Suppose that the mesh Th satisfies (2.10). Then there are con- 
stantsc, C andC such that, if xEKfn7Qj, dj ?Ch andH=ChK, then 

c?ID Uh(X)l?0 < __ 
HU() < C. 

C- 
D2U(X)l 

further, if 1xj ? Ch and H = Ch, then 

ch:-2 < ID2Uh(X)I < Ch-2. 

The proof of Lemma 2.3 will be given below. The proof of Lemma 2.4 is analogous 
to the proof of Lemma 2.2 above and relies on Lemma 2.3. 

From Lemma 2.4 it follows that D2Uh (X) will be a reasonable approximation of 
D2u(x) in {JXI > Ch}. Thus, if the stopping criterion is not satisfied, the algorithm 
will produce a refinement Th of Th with the following characteristics: 

(2.12a) h(x) - d>2- if x E Qj, dj > Ch 

(2.12b) h(x) h :=6h2-' if JXI < Ch 

and 6 < Ch-1. Redefining now Th = Th and letting h and h take the roles of 
h and h, we then have again the same situation as at the start of Step 2 at the 
beginning of this subsection, i.e., a mesh Th satisfying (2.10). The process may now 
be repeated. 

2.5. The Number of Steps: Statement of Main Result. Let us now see how many 
steps will be required to obtain a mesh on which the error tolerance is satisfied. 
For simplicity, we start with a quasi-uniform mesh TK with mesh length h = 6. We 
denote by hn the minimal mesh length of the triangulation Th = Thn obtained after 
n steps. According to (2.10b), we will then have 

h =6h 23 X n > 1, 

where ho = h = 6, and consequently 

n = 2-,3 = 66 (2-f) h(2 _') 2 

- 88(2-l) ... ,(2_0)n =(1-(2-0)n+1 W(3-1) 

so that 

(2.13) h:-1 = 1-(2-3)n+l 

Now, as a by-product of the proof of Lemma 2.3, we have the following error 
estimate which gives a generalization of (2.5) to a non-quasi-uniform mesh: If Th 
satisfies (2.10) then 

IIV(U - Uh)Ijoo Q < CV-1. 

In particular, we thus have, recalling (2.13), 

(2.14) IIV(u - uh)jj0,0Q < Ch O -h = C61-(2-O)n+l 
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This means that we will not in a finite number of steps achieve IIV(u - uh)JJoc0Q < 

C6. In practice, this does not of course pose a problem; we may, e.g., assume that 
n is chosen so that 

,- (2-O)n+ 1< C1 

with C a moderate constant. The qualitative conclusion from (2.14) is that the 
required number of steps would (slowly) increase as f approaches 1, / > 1. 

We can now summarize our main result as follows: 

THEOREM. Suppose the exact solution u satisfies (2.1). Then the adaptive al- 
gorithm with initial mesh length h = 6 will produce a sequence of meshes Tn, 

n = 0,1, 2,..., with corresponding finite element solutions uh (Uo = uh), such that 

IIV(u - uh)II Q < c_1-(2_f)n+1 

Further, the mesh Thn will be correctly refined in the region {JxJ > Cin-1} where 
in-1' the minimal size of elements in Th"-1, is given by 

hn-1 = 60n rX SOn = (1 -(2 - )n)/( - 1)1 

and the region {JxJ < C7h L} will have a quasi-uniform mesh of size h 

3. Proofs of Lemmas 2.1 and 2.3. It remains to prove the local estimate 
(2.11) of Lemma 2.3. Clearly Lemma 2.1 can be viewed as a special case of Lemma 
2.3 and does not require a separate proof. For the proof of Lemma 2.3 we fix j 
and an arbitrary point x0 E Qj, together with the element Ko containing x0, for 
which we may assume dist(Ko, 0) dj. We let iih E Vh denote the piecewise linear 
interpolant of u and write 9i := 9/9xi, i = 1, 2. 

For the interpolant fih we have 

IIV(u- ih)IIooKo < ChKoUI2,ooKo < Chjdl& , 

and hence, by the triangle inequality, 

|I9( U- uh) (Xo) ? Chd32 + I9i (ih _ Uh) (Xo)I 

Since 19,(ith - Uh) is constant on Ko, the last term can be represented as 

I 9.(fh - Uh)(xo)I = I(19(fh _ Uh), 6o)I, 

where 60 is a smooth approximate delta function, supported in K0, and such that 

h20I60oIIooKo < C. 

Thus, 

|u - 
(u-h) (Xo) ? 3h d52 + I (di hUh) , 60)I 

< Chdv2+I(e9i(u - uh), 6o)I, 

where we have again used the triangle inequality. Let now G solve the adjoint 
problem 

{ -AG =9i6o in Q 

=0 onf, 

and let Gh E Vh be the Ritz projection of G determined by 

a(v,G Gh) =- VVEVh. 
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Then, 

(hi(u - uh), 6o) = -(u uh, 96o) = -(u uh, -AG) 

(3.1) = -a(u - UhG) = a(u - uhGh - G) = a(u - iihGh - G). 

Below we shall show, with e Gh - G, that 

(3.2) IIVeIIL1(Q) < Ci 

and 

(3.3) 1IVeIl;+2 < C0d71, 

where JJ denotes the L2(w)-norm and Qk = {x E Q: Ijx < 2-k} as above. Using 
(3.1), (3.2) and (3.3), together with approximation properties of the interpolant fjh, 

we find 

I(9i(u - uh), &o)I = Ia(u - Uh e)I 
? E IIV(u -u h)II0 kIIVeIILl(0k) + C 5 IIV(u -U h)I0,kdkIIVeIInk 

k<j+2 k>j+2 

1/2 +0 5a ||~- II|0,eIV2;lll(2 

+ C (U 
_ 

||Vu-h) 11 
2 

kd2 11lelln-+ 

k>j+2 

22l2\1/2 

< C max hkd3j2 + C 0hd ) dT1 
k~~j+2 ~k>j+2 I 

? Chjd3-2, 

where in the last step we have used the definitions of dk and hk to get 

max hkdk = -max max(6h dod 26) 
k~j+2 k kj+2k 

=max(6h 'dd -2 6) = hj+2d','-2 < Chjdq-2 -+2 j+2- ) 

and 

Z hkd2-2= 62 maX(h4-2fdd20-2 d2) 
k>j+2 k>j+2 

<262 max h 1 d(0-2 d2 E d 

k>j+2 k>j+2 

< C62 max(h4 20dj2,-2 d?) = Ch2d2,-2. 

In order to prove Lemma 2.3, it now suffices to verify (3.2) and (3.3). For this 
purpose we introduce the domains (cf. Figure 3.1) 

Wk ={xEQ: 2-k < |x - xol < 
2-k+1} 

and 
W= {x E Q: Ix - xol < 2-k}. 
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For the proof of (3.2) we have first 

IIeL1(Q) = E 1IVeIhwj + IIVeIILl(WJ) < CS + CdjjjVejjwp, 
k>J 

where 
S >= ? dk|| VeillWkX 

k<J 

and where J will be determined later. For the moment we only assume that J is 
not too big so that whenever k < J and K intersects Wk, K E Th, then K C Wk: 

Wk-l U fk U Wk+ 1 We shall prove below that for a suitable choice of such a J, we 
have 

(3.4) S < C + Cdj IlVell.w + 'SI 

and 

(3.5) dj jjVejjwJ < C. 

Together, these estimates will complete the proof of (3.2). For the proofs of (3.4) 
and (3.3), we shall need the following local error estimate. 

LEMMA 2.5. There is a constant C such that the following holds: If C w' C Q, 
d := dist(w, Q \ w') > 0, and diam(K) < 1d whenever K intersects w, K E Th, 

then 

IlVell < C iXnf (IIV(G - X)IIW' + d-1IIG - Xllw) + Cd-1ljejj, . 

Proof. Let X E Vh be arbitrary and put = Gh - X and r = X - G, and let 'p 

be a smooth cutoff function such that 'p = 1 on w, 'p = 0 on each K intersecting 

Q \ w', and 

(3.6) Ip ,I < Cd-' for 1 = 0, 1, 2. 

Using integration by parts and the error equation 

a(v, e) = (Vv, Ve) = 0 Vv E Vh, 

we find that, with 1 = 1 

IkoVfII2 = (V(op2f), Ve) - 2(~V', EVE) 

(3.7) = (V('p22), Ve) - (V('p22), Vo) - 2(Vqp, -EVE) ( * ) ~~= (V('p2f - ('p2f)h), Ve) - (V('p2f), Vex) - 2(~V', EpVE) 

= (V('o2~ - ('p2 )h), V) -(V('p2 )hj,7V) - 2(~V9p, EpVE), 

where ('p2f)h E Vh denotes the piecewise linear interpolant of 92f satisfying 

(3.8) 11,7(p2f)hjj < C11,7,>,2f)jjj 

(3.9) 1JV(p29 _ ('p2i)h) J|K < ChK S 1DO'('p2) 11K VK E Th. 

jcaj=2 

We shall now estimate the three terms on the right-hand side of (3.7). By (3.9) 
and (3.6), together with the fact that f is piecewise linear, and using an inverse 
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estimate on each K, we obtain , 

|(V(2 f_ (902f) h) l 

< C E hK(d2 IIIIK + d |I9V0IIK)IIVIIK 
K 

KCw' 

< C E (d IIIIK + IoV|IIK)d 1kIIK 
K 

KCw' 

< Cd-211I12, + 4IkoVII2. 

Using (3.8), we find that 

I(V(p2f)h, V))l CI|V(p2<)|I|IV|II' 
< Cd-2 IkII12, + 

I 
jkOVfII2 + CIIVr,112. 

Finally, 

12(Vp, pV) ? < Cd2IkII1,, 4 1IkVfII2- 

Altogether we now have 

IkoVf II2 < C(d-2 Ik 2I,, + 1IVI,112) + 3 
1kV1 II2, 

and hence 

jkpoVfII < C(d- IkI1w, + IJVJIIw,'). 

For the error e, this implies 

IVeIJw < RpOVf1 + JIIV7Jw < C(d IkI11 ? IIv +117 A) 
< C(d-' 12711w' + d-1IleJJw' + IVjIIjw, ), 

which completes the proof of Lemma 2.5. 5 
We now continue with the proof of Lemma 2.3 with the purpose of first showing 

(3.4) and (3.5), and then (3.3). Applying Lemma 2.5 with w = Wk and w' = wk 

X = a'h the piecewise linear interpolant of G, and 

Hk := 6 max(h23, (Ixo1 + dk)2-:) max hK 
KCw' 

k 

(cf. Fig 3.1), we obtain 

S = E dkllVellWk < C E (dkIlV(G - h)IIWk +? |G - hIIWk + eIIWk) 
k<J k<J+l 

< C E (dkHk + Hk)lGl2,2,wk + C E JlelIWk 
k<J+2 k<J+1 

In order to estimate IG12,2,wk, we use the representation 

D'G(x) = J D g(x, Y)0i60 (y) dy 

=- -'K 9iD' g(x, y)8o(y) dy, x ? K0, 

where g(x, y) is the associated Green's function, known to satisfy 

(3.10) D D' g(x, y)I < CIx YI-2-yil for lal = 2, 1-y = 0, 1. 
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Hence, 

|G 2,2,wk < Cdk max max I D G (x) ? < Cd |2 I 60 |I L (K, ) < Cd -j2 
jcaj=2 XEWkkk 

and so 

S (dkHk + Hk)IGI2,2,wk 
< 5 (dC Hk dk H,2) 

k<J+2 k<J+2 

< C (1?+ maxd Hk) 5dk Hk, 
k<J 

where in the last step we have used the facts that dkj1 < 4dk12 and Hk < Hk-2 

Below we shall choose J in such a way that 

d-1Hj = maxdk-Hk < C. 
k<Jk 

Further, 

d- = 6 max(hh2 fld1- (IxoI + dk)2-fd-1) 
k<J k<J 

< C6 max (h 0 
E d-1 IX,12- IxoIE dk1 , 5dk 
k<J k<J k<J 

? C6 max(h2 dyl, IxoI2_d51,d1Y'3) 

? C6max(h2ldyl, (IxoI +dj)2 -d-1) 

= CHjd 

Hence we conclude that 
S < c + S IlellWk 

k<J+1 

Let us now estimate lIle IIWk We have that 

IIeIIWk = sup('p, e), 

where the supremum is taken over all p with support in Wk and with IIPIIWk = 1. 
For such a p, let 0 be the solution of the adjoint problem 

-AO = 0 in Q. 

0=0 onf, 

and let Xh E Vh be the piecewise linear interpolant of 4, so that 

I(p, e)I = la(O, e)I = la(O-kh, e)I 

< IIV(O - Xh)IIw IlVellw + IIV(k - Xh)llw_ IIVell-w 
l<J 

< C 5 H1I412,2,,w IlVellw + CHJIO12,2,,-_, IIVellwp 
l<J 

Here, 

1012,2,w, < C3l min(dl 2, dj-2)dk. 
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For I < k - 2 and I > k + 2, this follows from the representation 

D'O0(x) = f Dxg(x, y) p(y) ds, 

using (3.10), and for k - 1 < I < k + 1, it is a consequence of the standard elliptic 
regularity estimate 

1012,2,0 < CII(P11. 

Estimating kk12,2 J by similar arguments, we find that 

ICe1IWk < C E Hid1 min(d 2, dk 2)dkIIVeIjw1 + CHjdjdkj1 IIVellw, 
l<J 

and by changing order of summation we conclude 

E Iellwk ? CEZIVeIjw1Hidj E dkmin(dl 2,dd-2) 
k<J+1 1<J k<J+1 

+CHjdjIIVeII.- E d5- 
k<J+1 

? C E Hi IlVellw, + Cffj 111ell.- 
l<J 

< C* max(Hidc()S + CHjIIVejj,,. l<J 

In order to complete the proof of (3.4) we now choose J such that 

1 <1Hjdj 1max Hid < 
4C* 1<i<J - 20 

It remains to show that (3.5) holds for this choice of J. We then note that by 
stability we have II Vell < IIVGII, where 

IIVGII2 = a(G, G) = (GC Oi6o) (-(jGj, o) < IIVGII II6oIIKo - 

Together, these estimates show that 

djIIVell < djIIVGII < dJII6oIIKo < Cdjh-1 < C, 

where, in the last step, we have used that 

-2-fl 2-3 2-) d- C*Hj < C6 max(h IxoI2-, di7-) 

implying, since 6 < Che , that 

dj < C6 max(h2 , IxoI2-:) -hKo. 

It now remains to prove (3.3). For this we first note that as a part of the proof 
of (3.4) we have shown that 

E IIejIwk < C, 
k<J+l 

which in turn implies that 

11ellV;? < C. 
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Mesh size - 6 

Maximal mesh size on k 

Hk = max (6h2 6' (Ix0I + dk)2-) 

FIGURE 3.1 
Mesh size depending on the distance to the origin. 

To see this, note that the domain f2+>, provided that d3 > Ch for a sufficiently 
large C, is covered by, say, at most two of the domains Wk. 

Now let p be a cutoff function such that p = 1 on Qj+2, p = 0 on each K 
intersecting Q \ Q*+I, and such that 

Jc'i,oo ' Cd'l for 1 = 0,1, 2. 

Then, by Lemma 2.5 with w = Qi+2, w' = Qi*+1, d = dj/4, and X-0, we have 

IIVeIjo;?2 <C(IlVGI1n;?1 +dIj'1G1n;? )+ Cdj'IeIjn; <(, Cd'd, 

where we have used our above estimate of Ijejjnk+1 and the fact that 
j+1 j+1 

- ~~~j+1 j dil gVGIgn;+ + IIGIgo;+, < ~j |G|o;l+d lgon+ 
< CII6OIILi(KO) < C. 

This completes the proof of (3.3) and hence of Lemma 2.3. 0 
Remark 3.1. From the error representation formula (3.1) it follows that the 

constant Co in (0.2) can be estimated as follows: 

CO < (Cl + 1)C2, 

where 

C, = max IIVGh(xo, )IiL1(rn, 
xoEQ 
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with Gh(Xo, .) the discrete Green's function with pole at x0 E Q occurring in (3.1), 
and where C2 is the error constant in interpolation with piecewise linear functions: 

IU 
- iihI1,00 < C2 max 

hKjuI2,oo,K. 
KETh 

The constant C2 depends on the minimal angle of the triangulation Th and may 
easily be estimated (on reasonable triangulations one can probably take C2 - 2 
in practice). Note that C1 essentially depends only on Q (and the coefficients in 
a variable coefficient generalization of (0.1)) and not on the right-hand side f. To 
compute Ci approximately, it may in many cases be sufficient to compute Gh(xoX) 
on a coarse mesh for only a few conveniently chosen points x0 E Q (see [9]). 

4. Numerical Results. In this section we give the results of some numerical 
experiments with the following variant of the algorithm analyzed above, where 30 
and 40 are replaced by: 

30'. For each K E Th find Vuh(PK) at the center of gravity PK of K and also 
VUh(PK,) for the set N(K) of neighboring triangles K' E Th with one side 
in common with K (see Figure 4.1) and set 

D 2(uh; K) = max ID PK) - Dauh(PK,)I H 
j~~ij= I PK -PK'I 

K'EN(K) 

40. If for all K E Th 

(4.1) hKD 2(Uh ;K) < 6, 
then stop and accept the finite element solution uh. Otherwise, construct 
a new mesh Th by repeatedly subdividing each triangle into four equal 
triangles until 

(4.2) hkD 
2 (uh;K) <6 vK E Th with k C K. 

This algorithm essentially corresponds to the algorithm of Section 1 with Co = 1, 
C = 0 and H = hK. 

To implement the algorithm, we used the PLTMG-code by R. E. Bank [5] and 
simply replaced the Babuska type adaptivity, originally present in this code, by 
our own adaptivity. We kept the following feature of the original PLTMG-code: 
Successive meshes Th are chosen so that the number of degrees of freedom increases 
by approximately a factor of 4. This means that in 40' the repeated subdivisions 
are only carried out as long as this condition is met. As a result, a somewhat larger 
number of steps than theoretically necessary is sometimes taken in practice. Notice 
also that in the PLTMG-code 'transition elements' obtained by subdivision into 
two triangles (obtained by introducing the dotted lines in Figure 4.2) are used to 
connect triangles with different subdivisions. 

Such dotted lines are removed before and reintroduced after continued subdivi- 
sions, which means that no triangles with small angles will be constructed during the 
refinement process unless such triangles were present in the original quasi-uniform 
triangulation. 

Example 4.1. We first give the results obtained for the problem 

u/u= 0 in Q. 

u = uo onF, 



AN ADAPTIVE FINITE ELEMENT METHOD 377 

FIGURE 4.1 
Evaluation points for computation of D2 (Uh; K). 

*1 X 

FIGURE 4.2 

for the convex pie-shaped domain Q = {x = r(cos 0, sin 0): 0 < r < 1, 0 < 0 < 
3wr/4} with exact solution u(x) = r4/3 sin 40/3. In Figure 4.3 we give the sequence 
of meshes produced by the algorithm with gradient control according to (4.1) with 
6 = .1. In Figure 4.4 the actual gradient error IVe(x)l and error le(x)l are given 
as functions of the distance lxi to the origin along the radius 0 = 7r/2. We observe 
that the gradient error is very well controlled, and thus the algorithm performs as 
desired. We also note that the error le(x)l decreases as x approaches the origin, as 
is to be expected, since the mesh is overly refined with respect to control of IjeIK"",Q; 
cf. Example 4.2 below. 

Example 4.2. To further illustrate the performance of the algorithm, we consider 
the following mixed Dirichlet-Neumann problem 

Au = O in Q. 

u = uo on F+ U F2, 

|9U = 0 on FT 

with exact solution u(x) = r1/2 sin 0/2, where Q is the semidisc {x: lxI < 1, X2 > O} 

with boundary F subdivided as follows: F? - { E F: X1 Z 0, X2 = 0}, r2 = {x E 

r: X2 > 0}. In this case, u has a singularity of the form r3 with 3 < 1, so that 
Vu(x) is singular and IVe(x)l -* oo as lxi -- 0 on any mesh. 
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FIGURE 4.3 

Magnification 10 times 
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FIGURE 4.5 

Magnification 50 times 
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Let us now give the results obtained by applying our algorithm to this problem 
with control of llellImn, that is, we simply replace hK and hk in (4.1) and (4.2) by 
h% and hM. In Figure 4.5 we give the final mesh, with a zoom at the origin, obtained 
starting with an initial mesh similar to the initial mesh in Figure 4.3 and using the 
tolerance 6 = 0.01. We also give in Figure 4.6 the actual distribution of le(x) I along 
the same radius as above, again with a zoom. We observe that le(x)l is roughly 
constant in IxI and thus the algorithm succeeds in finding a well-equilibrated mesh. 

A theoretical analysis and justification of the algorithm in the present case, which 
is not covered by this note, since 3 < 1, is given in [5]. 

Example 4.3. We also tested the algorithm with control of IVe(x)l for problem 
(4.3), that is, with control according to (4.1) and (4.2). As already remarked, 

IVe(x)l -+ x as IxI -+ x on any mesh, but we now ask how well the algorithm 
manages to control IVe(x)I for IxI > 0. In Figure 4.7 we give the final mesh, together 
with a zoom, obtained by taking 6 = 0.1. The actual distribution of IVe(x)I is given 
in Figure 4.8, where we see that in fact IVe(x)l is very well controlled up to the 
very last elements close to the origin. 
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